COGNITIVE AND BRAIN CHANGES IN MULTIPLE SCLEROSIS

MARCH 27, 2017

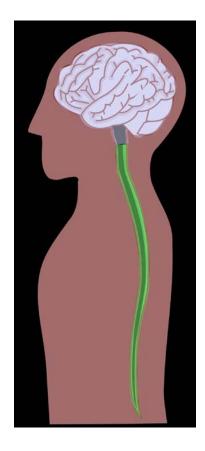
Esther Fujiwara, Ph.D. (efujiwara@ualberta.ca) Department of Psychiatry, University of Alberta

Objectives

- Identify cognitive challenges in multiple sclerosis and their measurement.
- 2. Understand the importance of brain and cognitive reserves.
- 3. Learn about how to keep and build active minds and healthy brains.

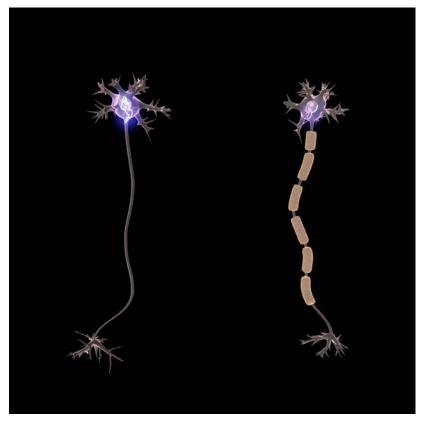
Overview

- Brain & Cognition in MS
- Measuring Cognitive Challenges in MS
- Brain/Cognitive Reserve
- What To Do


Overview

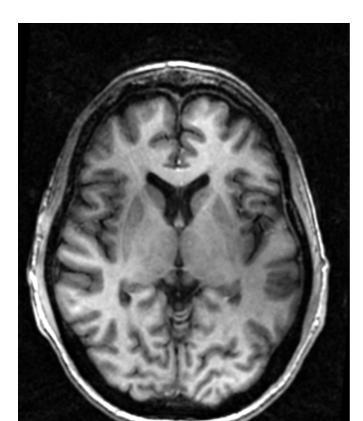
Brain & Cognition in MS

- Measuring Cognitive Challenges in MS
- Brain/Cognitive Reserve
- What To Do


Brain changes in MS

 In MS, the immune system mistakenly attacks and damages the central nervous system (CNS).

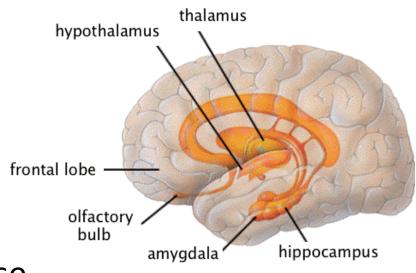
Brain changes in MS


 Damage to the brain's white matter slows information throughput.

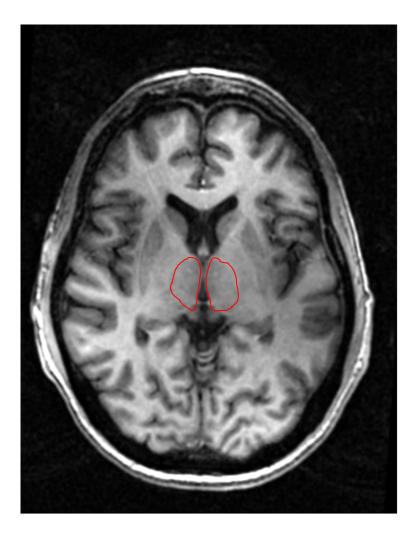
By Dr. Jana - http://docjana.com/#/saltatory

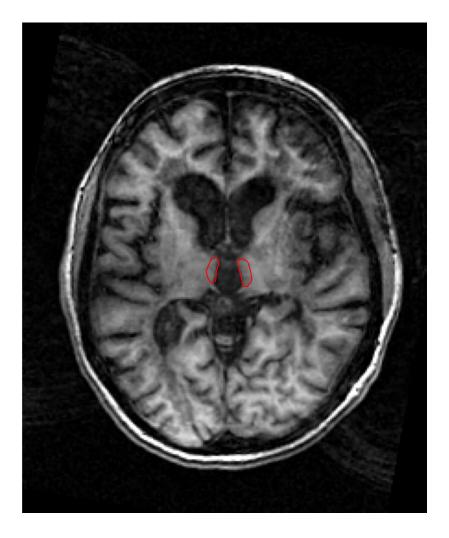
Brain changes in MS

- In addition to lesions, there is brain tissue loss (atrophy).
- If MS is left untreated, tissue loss is faster and more pronounced in pwMS (~ premature "brain aging").

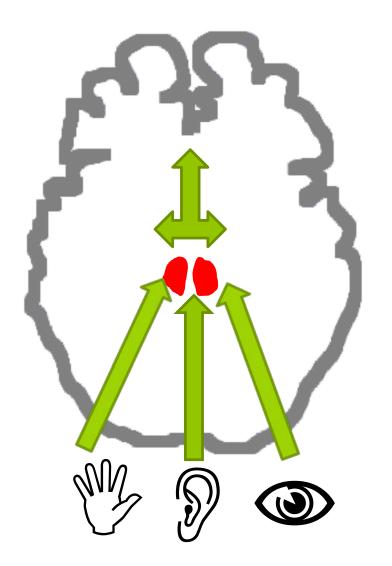


Cognition and brain changes in MS

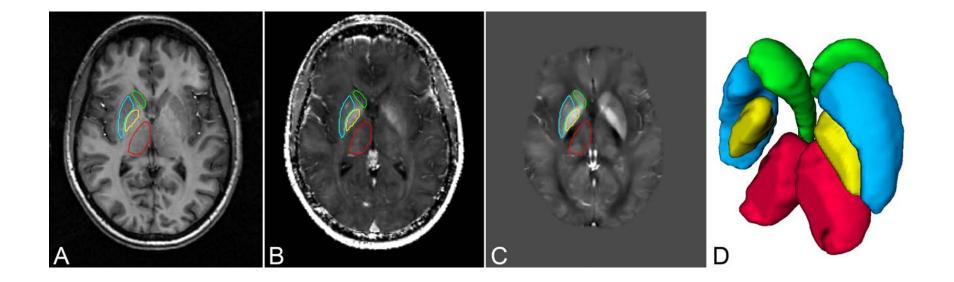

 Most of the brain changes observed in MS relate to changes in cognitive functions.


In particular:

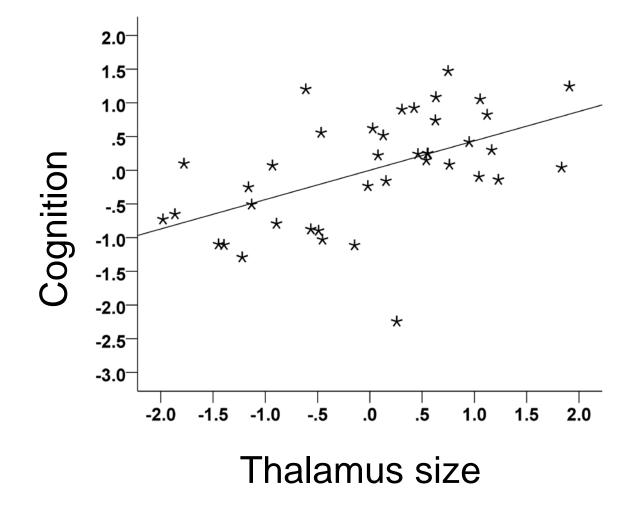
- Thalamus
- Hippocampus
- Pre-frontal/ frontal cortex
- Connections between these



Thalamus & cognition in MS



Thalamus & cognition


Almost all sensory information passes through the thalamus.

Thalamus & cognition

Fujiwara et al. (2017). American Journal of Neuroradiology

Thalamus & cognition

Overview

• Brain & Cognition in MS

Measuring Cognitive Challenges in MS

- Brain/Cognitive Reserve
- What To Do

Cognitive challenges in MS

Information Processing Speed Learning and Memory

Attention

Executive Functions

Language Spatial Any cognitive challenge: 40% - 70% of pwMS

Cognitive functions

Information processing speed

• How fast (sensory) information is passed on and evaluated

Learning and Memory

- Learning: Acquiring and storing new information
- Memory: Retrieving stored information

Attention

- Divided: Concentrating one two (or more) things at once
- Selective: Concentrating on one thing, ignoring others

Executive functions

- Umbrella term: Cognitive flexibility, planning, prioritizing
- Orchestrating the other cognitive functions

Cognitive functions

Language

Production, comprehension, reading

Visuo-spatial functions

Visual perception & construction, navigation

Less or unaffected

Cognitive challenges in MS

- Can go unnoticed and/or are attributed to depression, fatigue, or stress.
- Are only weakly related to other disease characteristics and disability (motor ≠ cognitive).
- Can occur at any time, but are more common later in the disease.
- Possible in any disease course, but are more likely in progressive MS.

MS is not dementia

- Cognitive challenges in MS are usually milder than in dementia, like in Alzheimer's Disease.
- The progression of cognitive deficits is also less severe in MS than in AD.
- There is no evidence that the risk for getting AD is higher in pwMS.
- The biology of the two conditions is different.
- Largely unsuccessful intervention studies with AD medications (like donepezil) in MS.

Measuring cognition

REPORT

Subjective report of cognitive issues.

MSNQ (Benedict et al. (2003). Screening for multiple sclerosis cognitive impairment using a self-administered 15-item questionnaire. Multiple Sclerosis Journal, 9(1), 95-101).

15 questions for pwMS & informant.

But the MSNQ also reflects mood.

Measuring cognition

REPORT

- Subjective report of cognitive issues. NEUROPSYCHOLOGICAL TESTING
- Objective assessment of cognitive functions with standardized and normed test instruments.

Neuropsychological testing

- Full examination
- Neuropsychological screening

• Neuropsychological tests are: *Standardized: Applied in the same way. Normed: Healthy people's performance is known.*

Neuropsychological examination

- Has to be led by a clinical neuropsychologist.
- Usually guided by a specific question (like "Can I drive a car safely?").
- 1-3 hours, sometimes several sessions.

- Minimal Assessment of Cognitive Function in MS (MACFIMS)
 - 7 tests (90 min.)

MACFIMS: Benedict et al. 2002; Clinical Neuropsychologist, 16, 381–397

Processing speed/working memory Learning and memory Executive function Visual-spatial processing Verbal fluency

- Brief Repeatable Battery of Neuropsychological Tests (**BRB-NT**)
 - 5 tests (30 min.)

BRBN: Rao, S. M., & the Cognitive Function Study Group of the National Multiple Sclerosis Society. (1990). Milwaukee, WI: Medical College of Wisconsin.

Processing speed/working memory Learning and memory Verbal fluency

BICAMS (Brief International Cognitive Assessment for MS) is an international initiative to recommend and support a cognitive assessment that is brief, practical and universal.

www.bicams.net

BICAMS

- Symbol-Digit Modalities Test
- CVLT-2
- BVMT-R

BICAMS (Brief International Cognitive Assessment for MS) is an international initiative to recommend and support a cognitive assessment that is brief, practical and universal.

www.bicams.net

BICAMS

- Symbol-Digit Modalities Test
- CVLT-2
- BVMT-R

~ 15 min. Material: Paper, pen, stopwatch Initial expert training

Symbol Digit Modalities Test

	T	П	°O	∞	m	Ξ		7
1	2	3	4	5	6	7	8	9

Ξ	Π	-	∞	-	T	∞	m	Ŧ	"O		Ξ

Ŧ	Ξ	m	-	Π	m	Ξ	∞	°"	T	Π	$\mathbf{\hat{\Box}}$

Symbol Digit Modalities Test

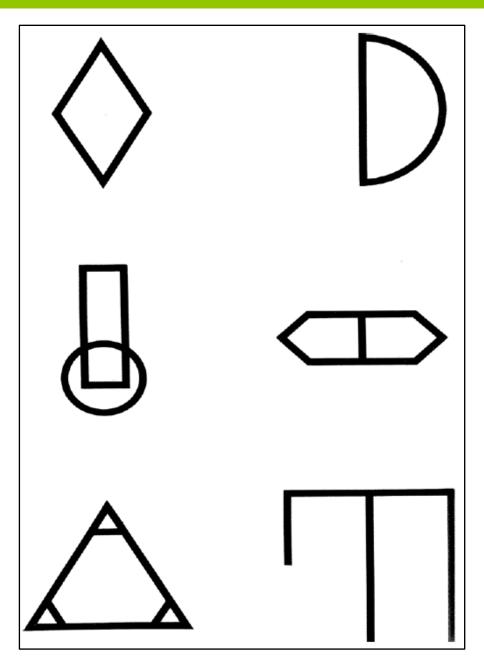
Faux Example

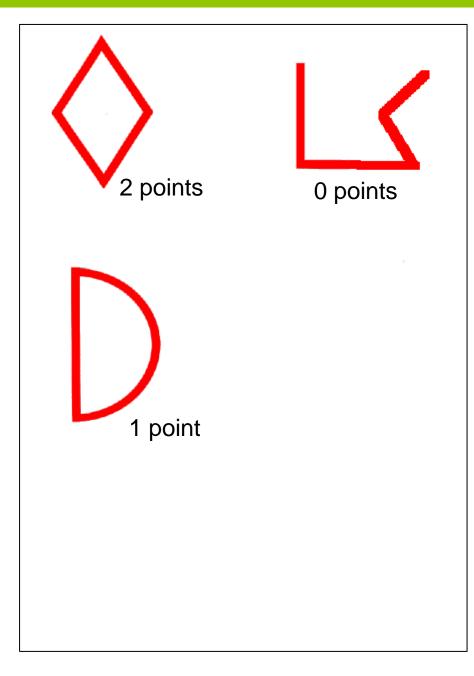
	T	П	"O	8	m	Ξ		-
1	2	3	4	5	6	7	8	9

Ξ		Π	-	∞	-		T	∞	m	Ŧ	"O		Ξ
7	8	3	9	5	9	8	2	•	•	•			

T	Ξ	m	-	П	m	Ξ	∞	` O`	T	Π	$\mathbf{\hat{\Box}}$

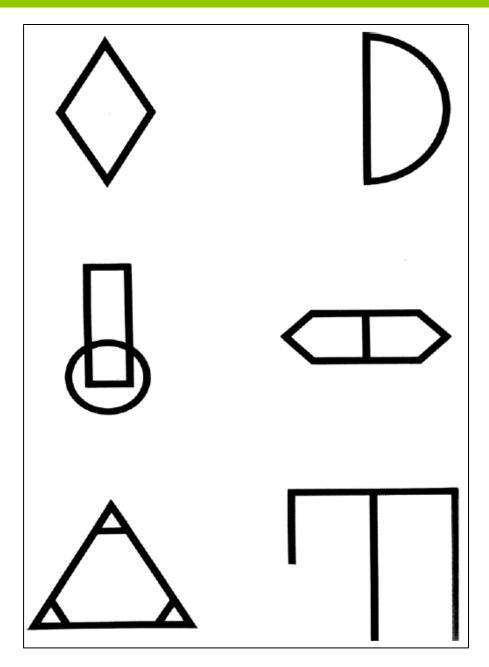
•••• Outcome: Number of correct responses in 90 seconds


Apple		
Tiger		
Car		
Shoes		
Orange		
Boat		
Lion		
Socks		
Puma		
Banana		
Airplane		
Gloves		
Hat		
Leopard		
Bike		
Pear		



	Boat		
	Tiger		
	Car		
	Lion		
	Leopard		
	Apple		
	Shoes		
6/16	Airplane		
6 / 16	Puma		
	Bike		
	Hat		
	Pear		
	Socks		
	Orange		
	Banana		
	Gloves		

Faux Example


9/16 8/16 8/16 10/16 6/16 **Outcome: Number of correct** responses across five learning trials

Faux Example

Outcome: Total score across 3 learning trials

Canadian outcomes

Contents lists available at ScienceDirect

Journal of the Neurological Sciences

journal homepage: www.elsevier.com/locate/jns

Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS): Canadian contribution to the international validation project

Lisa A.S. Walker ^{a,b,c,d,e,f,*}, Leila Osman ^{a,g}, Jason A. Berard ^{b,d}, Laura M. Rees ^{a,b,d,e}, Mark S. Freedman ^{a,b,c}, Heather MacLean ^{a,b,c}, Denis Cousineau ^d

- ^a University of Ottawa Brain and Mind Research Institute, Canada
- ^b The Ottawa Hospital Research Institute, Canada
- ^c University of Ottawa, Faculty of Medicine, Canada
- ^d University of Ottawa, School of Psychology, Canada
- e Carleton University, Department of Psychology, Canada
- ^f Carleton University, Institute of Cognitive Science, Canada
- ^g St. Paul University, Canada

Main outcomes: BICAMS Canada

- 51 pwMS, 57 healthy controls
- At least 1 test impaired: 58% of pwMS
- Most sensitive: SDMT
- Related to employment status: BVMT-R
- Some practice effects \rightarrow newly emerging impairment meaningful
- Walker et al. (2016): Canadian norms and cut-off scores

Walker et al. (2016). Journal of the Neurological Sciences, 362, 147-152.

Summary 1

- Cognitive challenges are common in MS and related to brain changes.
- Processing speed and learning/memory are most affected.
- MS is not dementia.
- Neuropsychological testing or screening is needed:
 - to know if cognition is compromised
 - to know if cognition changes over time
- The BICAMS is an easy-to administer screening, and now also has data from Canada.

Overview

- Brain & Cognition in MS
- Measuring Cognitive Challenges in MS
- Brain/Cognitive Reserve
- What To Do

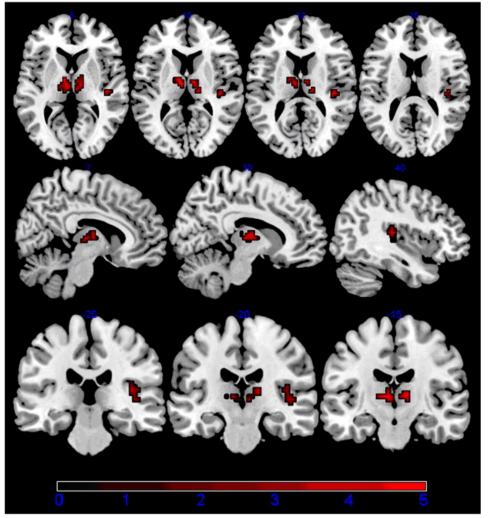
Brain Reserve & Cognitive Reserve

- Hardware vs. Software
- Brain reserve: 'More brain tissue' is a buffer to delay the onset of noticeable cognitive problems.
- Cognitive reserve: Having many ways to do a cognitive task makes it more robust to brain damage.

Reserve in MS

- In MS: Ongoing noticeable (e.g., relapses) and less noticeable damage can reduce brain reserve.
- Within limits, the brain adapts to these changes and compensates for lost function → Plasticity.
- If there is no more reserve, compensation becomes impossible.
- \rightarrow Important to protect reserve.

Brain Plasticity in MS

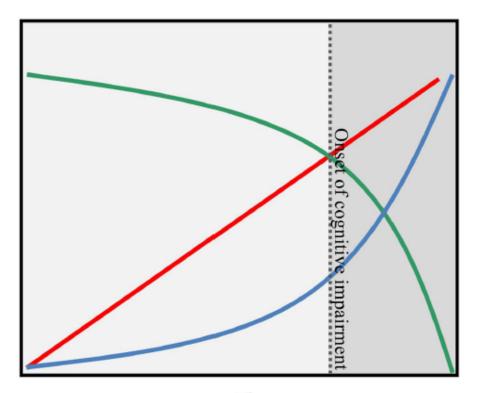

 How does brain function change under neurological challenges like in MS?

Brain Plasticity in MS

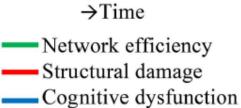
 How does brain function change under neurological challenges like in MS?

- To compensate, damaged brain structures may have to communicate more to each other
- \rightarrow Increased "functional connectivity"

Brain Plasticity in MS



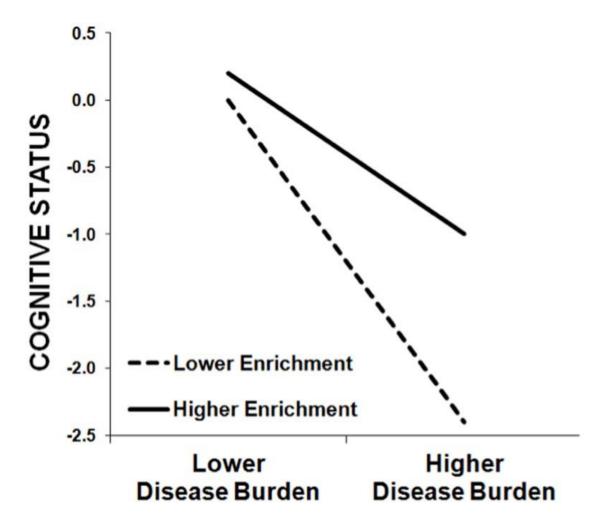
Thalamus (and insula): Increased functional connectivity


→ the brain has to
 "work harder"
 → fatigue !

Liu et al. (2011). Journal of the Neurological Sciences, Volume 304, Issues 1–2, 2011, 127–131 Brain plasticity in relapsing–remitting multiple sclerosis: Evidence from resting-state fMRI http://dx.doi.org/10.1016/j.jns.2011.01.023

Brain Structure, Function & Cognition

Hypothetical relationship between the 3 over time



Schoonheim, M. M., Meijer, K. A., & Geurts, J. J. (2015). Frontiers in Neurology, 6.

Brain Reserve & Cognitive Reserve

- Hardware vs. Software
- Brain reserve: 'More brain tissue' is a buffer to delay the onset of noticeable cognitive problems.
- Cognitive reserve: Having many ways to do a cognitive task makes it more robust to brain damage.

Cognitive Reserve & MS

"Enrichment" -

Education, but also leisure activities, hobbies, social activities, etc.

Sumowski, J. F. (2015). Frontiers in Neurology, 6, 176. http://doi.org/10.3389/fneur.2015.00176

Summary 2

- Brain and cognitive reserves protect against cognitive decline in MS.
- The brain is 'neuroplastic', also in MS.
- Compensates for some of the lost tissue.
- Compensation requires energy.
- Compensation is less likely when reserves are smaller.

Overview

- Brain & Cognition in MS
- Measuring Cognitive Challenges in MS
- Brain/Cognitive Reserve
- What To Do

Keeping and building reserves

<u>Goal</u>

- Keep your brain healthy
- Keep your mind active
- ...and your body, too

Treating cognitive challenges in MS

- Pharmacological
- Disease-modifying medications in relapsing MS.
- Mixed or null findings for progressive MS and for other drugs.
- Promising: Amphetamine (trials ongoing; Dr. S. Morrow, London, Ont.)
- Alternatives are urgently needed.

Treating cognitive challenges in MS

Cognitive Rehabilitation

• MEMREHAB trial

Intervention: Story Memory Technique

- Memorizing words by creating visuals and story context.
- \rightarrow 1 h sessions, 2 x week over 5 weeks

Chiaravalloti et al. (2013). Neurology 81(24), 2066-2072.

Cognitive Rehabilitation

• Learning (CVLT) improved for the intervention group.

Cognitive Rehabilitation

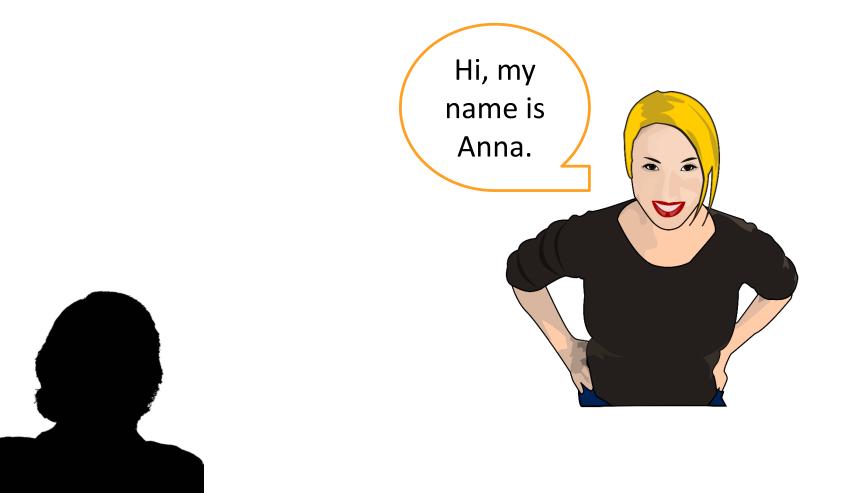
- Learning (CVLT) improved for the intervention group.
- The intervention also made everyday memory better
 → transfer

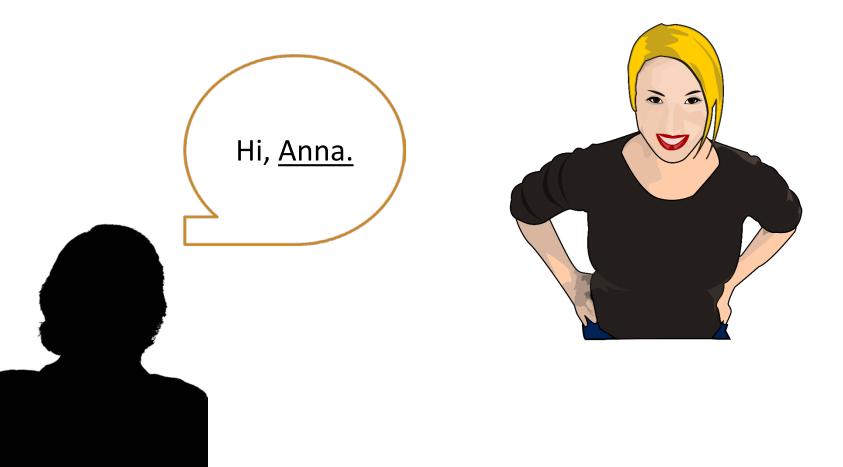
Cognitive rehabilitation

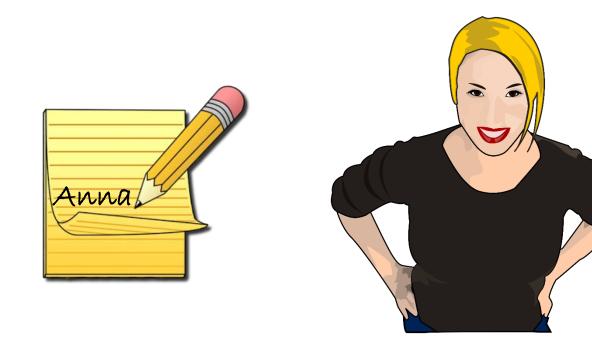
- Learning (CVLT) improved for the intervention group.
- The intervention also made everyday memory better
 → transfer
- ...and the memory boost was still there after 6 months.

Cognitive rehabilitation

- But: The intervention was less effective in pwMS with additional processing speed slowing (Chiaravalloti, N. D., & DeLuca, J. (2015). *Multiple Sclerosis Journal*, 21(12), 1575-1582).
- Other cognitive rehabilitation studies had more mixed findings.


Cognitive rehabilitation


- We need more research to find out:
 - <u>who</u> benefits most from
 - which <u>type</u> of cognitive rehab, and
 - how much is needed ("<u>dosage</u>")


Strategies (http://www.nationalmssociety.org)

Restorative

- Combine modes of learning
- Repeat & verify
- Spaced rehearsal
- Build associations

Build associations

Build associations

Imagery

A N N A A N N A A N N A

Strategies (http://www.nationalmssociety.org)

Compensatory

- Consolidate and centralize
- Plan
- Record
- Remind
- No distractions
- Take a break
- Do one thing at a time

 Several studies now suggest physical activity improves cognition (and other symptoms) in MS.

- Several studies now suggest physical activity improves cognition (and other symptoms) in MS.
- Aerobic (aka cardio-)exercise in particular.
- Even some recent evidence for brain changes!

Neuroradiology (2017) 59:61–67 DOI 10.1007/s00234-016-1767-x

FUNCTIONAL NEURORADIOLOGY

Exercise training effects on memory and hippocampal viscoelasticity in multiple sclerosis: a novel application of magnetic resonance elastography

Brian M. Sandroff¹ · Curtis L. Johnson² · Robert W. Motl³

Neurocase, 2014 Vol. 20, No. 6, 695–697, http://dx.doi.org/10.1080/13554794.2013.841951

Aerobic exercise increases hippocampal volume and improves memory in multiple sclerosis: Preliminary findings

V. M. Leavitt^{1,2}, C. Cirnigliaro^{3,4}, A. Cohen¹, A. Farag³, M. Brooks³, J. M. Wecht³, G. R. Wylie^{1,2}, N. D. Chiaravalloti^{1,2}, J. DeLuca^{1,2}, and J. F. Sumowski^{1,2}

¹Kessler Foundation Research Center, West Orange, NJ, USA
 ²Rutgers – New Jersey Medical School, Newark, NJ, USA
 ³James J. Peters VA Medical Center, Bronx, NY, USA
 ⁴Kessler Institute of Rehabilitation, West Orange, NJ, USA

Key study outcomes

- Small studies, including pw RR-MS.
- Aerobic exercise over 12 weeks of progressive treadmill walking or stationary cycling exercise (3x weekly).
- Improvement in memory and learning
- Increased volume of the hippocampus
- Reduced 'elasticity' of the hippocampus

Research Paper

Effects of exercise on fitness and cognition in progressive MS: a randomized, controlled pilot trial

S Briken^{1,2}, SM Gold¹, S Patra³, E Vettorazzi⁴, D Harbs³, A Tallner⁵, G Ketels⁶, KH Schulz^{3,7} and C Heesen^{1,2} MULTIPLE SCLEROSIS MSJ Journal

Multiple Sclerosis Journal 2014, Vol. 20(3) 382–390 © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav DOI: 10.1177/1352458513507358 msj.sagepub.com

Key study features

Study

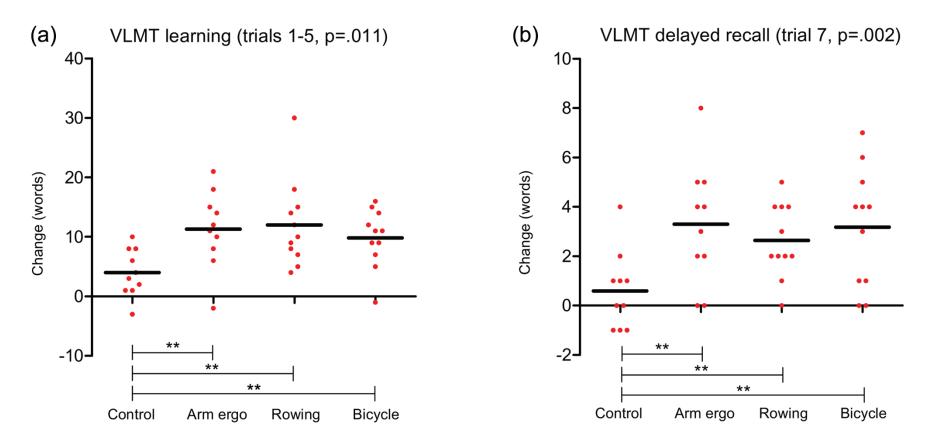
- People with progressive MS (EDSS 4–6).
- 3 different aerobic exercise groups
- 8-10 weeks duration

Outcome measures

- Cognition
- Aerobic fitness
- Walking
- Fatigue
- Depression

Aerobic exercise interventions

Rowing ergometer


Arm ergometer

Bicycle ergometer

Memory outcome

Better memory in all intervention groups

Briken, S., et al. (2014). Multiple Sclerosis Journal, 20(3), 382-390. reprinted with permission

Summary: What to-do

- Keep mentally active
- Continue leisure activities
- Use strategies to help you focus and remember things
 - "Information central"
 - Enrich your learning (associations, multiple modes)
 - Use reminders
 - etc.
- Try or continue a cardio-exercise

Consensus recommendations

Multiple Sclerosis and Related Disorders 9 (2016) S5-S48

Contents lists available at ScienceDirect

Multiple Sclerosis and Related Disorders

journal homepage: www.elsevier.com/locate/msard

Review article

Brain health: time matters in multiple sclerosis

Gavin Giovannoni^{a,*}, Helmut Butzkueven^b, Suhayl Dhib-Jalbut^c, Jeremy Hobart^d, Gisela Kobelt^e, George Pepper^f, Maria Pia Sormani^g, Christoph Thalheim^h, Anthony Traboulseeⁱ, Timothy Vollmer^j

^a Queen Mary University London, Blizard Institute, Barts and The London School of Medicine and Dentistry, London, UK

^b Melbourne Brain Centre, Royal Melbourne Hospital, University of Melbourne, Parkville, Australia

^c Department of Neurology, RUTGERS-Robert Wood Johnson Medical School, New Brunswick, NJ, USA

^d Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, UK

^e European Health Economics, Mulhouse, France

f Shift.ms, Leeds, UK

- ^g Biostatistics Unit, University of Genoa, Genoa, Italy
- ^h Patient Advocate in Multiple Sclerosis, Brussels, Belgium
- ⁱ Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- ^j Department of Neurology, University of Colorado Denver, Aurora, CO, USA

Thank you