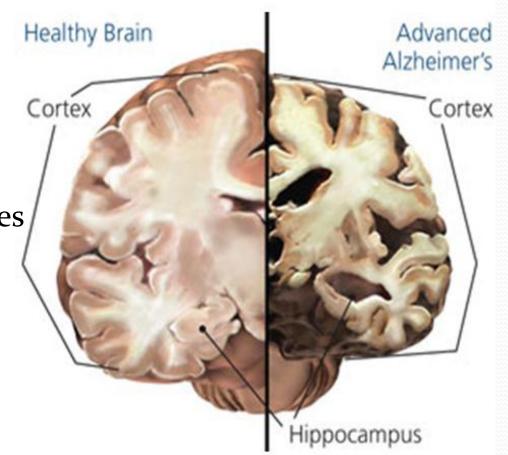


Physical and Cognitive Exercises (Dual-Task Training) to Prevent Falls in Dementia: a pilot study

Dr. Susan Muir PT PhD

Department of Geriatric Medicine Parkwood Hospital, Lawson Health Research Institute <u>Un</u>iversity of Western Ontario, London ON


Introduction

- Emerging area of falls research is the role of cognition on the control of postural stability
- Postural stability is a complex process
 - coordination of motor and sensory systems through higher order neurological processes (Horak 2006)
 - in particular executive function (Shumway-Cook & Woollacott 2000)
- Executive function impairment consistently associated with increased fall risk (Muir et al. 2012)

Neuroanatomy of Postural Stability

• Anatomy:

- Prefrontal cortex
- Hippocampus
- Pathology:
 - Alzheimer Disease
 - Impaired brain structures

Falls in the Cognitively Impaired

- Currently 480,600 people with dementia in Canada
 - 103,700 new cases per year
 - By 2038: 1,125,200 people with dementia (Rising Tide: the impact of dementia on Canadian society, Alzheimer Society of Canada 2010)
- Annual fall risk 60-80% (Shaw 2007)
- ↑ risk for fall related injuries
 - hip fractures (Kallin 2005; Tinetti 1988)
 - ↓ functional outcomes
 - ↑ institutionalization (Morris 1987)
 - ↑ mortality
 - **Jaccess to rehabilitation** (Beaupre 2008)

Fall Prevention among the Cognitively Impaired

- Older adults with cognitive impairment can comply with:
 - Multifactorial interventions (Shaw 2003)
 - Programs to improve physical function (Brill 1995; Jensen 2003)
 - Complex exercise programs (Schwenk 2010)
- Exercise training increases fitness, physical function, cognitive function, and positive behavior (Heyn 2004)
- Exercise programs to prevent falls in the cognitively normal do not work in the cognitively impaired
 - Requires novel interventions and accommodation for disease related deficits

Evaluation of Cognition in Postural Stability

- Dual-task paradigm
 - Observing people during a gait or balance task while they perform a secondary task
 - "Stops walking while talking" (Lundin Olsson 1997)
- Relevant
 - Most activities of daily living involve the simultaneous performance of two or more cognitive and motor tasks
 - Representative of real life situations where falls are likely to occur

Study Rationale

- Postural instability increases during the performance of multiple tasks simultaneously
 - Need for training balance in both single and dual-task conditions
- Novel fall risk reduction rehabilitation intervention needed in community-dwelling older adults with dementia
- Specific objectives:
 - Determine the effect of dual-task training
 - Identify barriers to rehabilitation

Study Objectives

- To determine the effect of physical and cognitive (dual-task) training on gait, balance, strength, and cognitive function in community-dwelling older adults with dementia.
- To determine barriers to rehabilitation for people with dementia through semi-structured interviews with participants and caregivers, and evaluate caregiver burden during and after the intervention.

Methods

- 12 week exercise intervention:
 - Mild to moderate Alzheimer disease
 - 3 times a week
 - Home based exercise program
 - Care-giver as coach
 - Home visit by physical therapist every 2 weeks
- Based on the Otago Exercise Program
 - Lower extremity strengthening exercises
 - Balance exercises
 - Paired with cognitive exercise
 - Walking program

Methods

Clinical assessment pre and post-intervention

- Cognitive testing
 - MMSE
 - MoCA
 - ADAS-cog
 - Trail Making Test A & B
 - Digit Span Test
- Physical function
 - Gait electronic mat
 - Balance 4 clinical tests and posturography (force platform)
 - Lower extremity strength
- Falls one year follow-up after completing exercise program

Results

- Recruitment:
 - Difficulty recruiting
 - Barriers reported for not participating in study:
 - Not interested in participating in research
 - Care giver burden
 - Not interested in exercise
- Presentation of results from n=6 completed exercise program
 - Sample:
 - 78.0±4.9 yrs, 83% male
 - MMSE = 22.3±5.3 MoCA=20.5±5.3
 - 50% moderate activity level
 - 83% no history of falls, not afraid of falling

Results

- All participants:
 - Able to perform the exercises
 - Able to do the exercises 3 times a week
 - Able to be progressed in the exercises over the 12 weeks
- Improvement in cognition:
 - Executive function (Trail Making Test B) p<0.016
- Gait, strength and balance remained unchanged
- Caregivers reported:
 - Improved mobility
 - Attention in the participants
 - No added burden to be coach

Conclusions

• In light of the recruitment barriers:

- Caregiver burden
 - Offering the exercise program through regional day program for community-dwelling older adults with Alzheimer disease
- Exercise
 - Need to find methods to motivate the sedentary to commence an exercise program
- Older adults with mild to moderate Alzheimer disease able to participate in dual-task training program
 - Gains seen in cognitive function
 - Need to establish the best methods to evaluate physical function to find changes
- Awaiting one year follow-up information on functional trajectories and falls

Acknowledgments

Post-Doctoral Fellowship: Gait & Brain Lab, Parkwood Hospital

Dr. Manuel Montero Odasso - supervisor Karen Gopaul, Anam Islam, Shamis Nabeel, Dr. Cedric Annweiler

Aging and Brain Memory Clinic, Parkwood Hospital

Dr Jennie Wells Dr Michael Borrie Janyth Mowat

Funding Agencies

Alzheimer Society of Canada – Postdoctoral Fellowship Research Award

Contact Information

• Dr. Susan Muir

 Gait & Brain Lab, Department of Geriatric Medicine Room A-350, Parkwood Hospital
 801 Commissioners Road East
 London, ON N6C 5J1

• Email: susanw.muir@sjhc.london.on.ca